Rescaling the GSVD with application to ill-posed problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ill-Posed and Linear Inverse Problems

In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.

متن کامل

Simplified GSVD computations for the solution of linear discrete ill-posed problems

The generalized singular value decomposition (GSVD) often is used to solve Tikhonov regularization problems with a regularization matrix without exploitable structure. This paper describes how the standard methods for the computation of the GSVD of a matrix pair can be simplified in the context of Tikhonov regularization. Also, other regularization methods, including truncated GSVD, are conside...

متن کامل

Ill-posed problems with unbounded operators

Let A be a linear, closed, densely defined unbounded operator in a Hilbert space. Assume that A is not boundedly invertible. If Eq. (1) Au = f is solvable, and ‖fδ − f ‖ δ, then the following results are provided: Problem Fδ(u) := ‖Au− fδ‖2 + α‖u‖2 has a unique global minimizer uα,δ for any fδ , uα,δ = A∗(AA∗ + αI)−1fδ . There is a function α = α(δ), limδ→0 α(δ)= 0 such that limδ→0 ‖uα(δ),δ − y...

متن کامل

Ill-posed problems in thermomechanics

Several thermomechanical models have been proposed from a heuristic point of view. A mathematical analysis should help to clarify the applicability of these models, among those recent thermal or viscoelastic models. Single-phase-lag and dual-phase-lag heat conduction models can be interpreted as formal expansions of delay equations. The delay equations are shown to be ill-posed, as are the form...

متن کامل

Parameter Identification for Nonlinear Ill-posed Problems

Since the classical iterative methods for solving nonlinear ill-posed problems are locally convergent, this paper constructs a robust and widely convergent method for identifying parameter based on homotopy algorithm, and investigates this method’s convergence in the light of Lyapunov theory. Furthermore, we consider 1-D elliptic type equation to testify that the homotopy regularization can ide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerical Algorithms

سال: 2014

ISSN: 1017-1398,1572-9265

DOI: 10.1007/s11075-014-9859-3